Author: polarnova

  • Can all NP problems be efficiently solved in quantum polynomial time?

    由于polar本科毕业需要将一篇英文文献翻译到中文,索性翻译BBBV97这篇经典的文章。polar在翻译定理和证明的过程中将自己的理解写进了remark,方便大家阅读。

    翻译工作是用Latex敲完的,但试过一些格式转换过后发现效果都不好。只能先直接把PDF文件放这了

    文章中的Theorem 3.4和Corollary 3.5(在译文中是Corollary 3.6)被广泛运用在各种其他文献中。

  • Quantum Information Processing

    “Central to many recent quantum algorithms is the ability to reduce high-dimensional operators to SU(2) building blocks, manipulate them with phase rotations, and then lift the resulting polynomial back to the original space.”

    1 Prelude: Why these three ideas?

    1. Cosine–sine decomposition (CSD) gives an explicit, numerically stable way to factor a unitary (or a tall orthonormal) matrix into 2 × 2 blocks.
    2. Qubitization leverages CSD to embed a (possibly non-unitary) operator into a larger unitary whose action on carefully chosen ancilla|system subspaces is a direct sum of those 2 × 2 blocks.
    3. Quantum Signal Processing (QSP) shows how alternating single-qubit rotations inside each block implement polynomial transformations of the operator’s singular (or eigen-) values.

    Together they supply a unifying algebraic template for Hamiltonian simulation, linear-system inversion, ground-state preparation, and more.


    2 Cosine–Sine Decomposition revisited

    2.1 Rectangular CSD (orthonormal columns)

    Theorem 2.2.1 Let UC(p+q)×pU\in\mathbb{C}^{(p+q)\times p} satisfy UU=IpU^{\dagger}U=I_p with qpq\ge p. Then there exist unitaries W1Cp×pW_1\in\mathbb{C}^{p\times p}, W2Cq×qW_2\in\mathbb{C}^{q\times q}, VCp×pV\in\mathbb{C}^{p\times p} and diagonal C=diag(c1,,cp)C=\operatorname{diag}(c_1,\dots,c_p), S=diag(s1,,sp)S=\operatorname{diag}(s_1,\dots,s_p) (with cj2+sj2=1c_j^2+s_j^2=1) such that

    U=(W100W2)(CS)V. U=\begin{pmatrix}W_1&0\\0&W_2\end{pmatrix} \begin{pmatrix}C\\S\\\end{pmatrix}V^{\dagger}.

    Sketch. Partition U=(U1 U2)U=\begin{pmatrix}U_1 \ U_2\end{pmatrix}.

    1. SVD of U1U_1U1=W1CVU_1=W_1CV^{\dagger}.
    2. QR of U2VU_2VU2=W2RU_2=W_2R.
    3. Orthogonality UU=IU^{\dagger}U=I forces RR=IC2R^{\dagger}R=I-C^2R=SR=S is diagonal.

    Hence the block-diagonal/diagonal factorization above.

    2.2 Unitary CSD

    Theorem 2.2.2 For UC(p+q)×(p+q)U\in\mathbb{C}^{(p+q)\times(p+q)} unitary and qpq\ge p,

    U=(W100W2)(CS0SC000Iqp)(V100V2), U=\begin{pmatrix} W_1&0\\0&W_2 \end{pmatrix} \begin{pmatrix} C&S&0\\ -S&C&0\\ 0&0&I_{q-p} \end{pmatrix} \begin{pmatrix} V_1^{\dagger}&0\\0&V_2^{\dagger} \end{pmatrix},

    with the same diagonal C,SC,S (now p×pp\times p) and unitaries $ W{1,2},V{1,2} $.

    This version pairs each cjc_jsjs_j into a 2 × 2 rotation block—exactly the structure a quantum computer loves.


    3 Qubitization: from blocks to oracles

    3.1 Block encoding

    Given an nn-qubit operator AA we say UAU_A is an mm-qubit block encoding if

    0mUA0m=A. \langle 0^{\otimes m}|\,U_A\,|0^{\otimes m}\rangle = A .

    3.2 Applying CSD inside the block

    Using Theorem 2.2.2 on UAU_A (after permuting qubits) we obtain

    UA  permute  j=1N(σj1σj21σj2σj)    I,(1) U_A \;\xrightarrow{\text{permute}}\; \bigoplus_{j=1}^{N} \begin{pmatrix} \sigma_j & \sqrt{1-\sigma_j^2}\\[2pt] -\sqrt{1-\sigma_j^2} & \sigma_j \end{pmatrix} \;\;\oplus I, \tag{1}

    where σj{\sigma_j} are the singular values of AA. This direct sum of SU(2) blocks is what the literature dubs qubitization.

    Formally, By conjugating with a permutation matrix K we can express the middle matrix in Theorem 2.2.2:

     

    (ΣS0SΣ000IN(M2))=Kj[N](σj1σj21σj2σj)IN(M2)K=Kj[N]e14Zeiarccos(σj)Xe14ZIN(M2)K \begin{aligned} \left(\begin{array}{ccc} \Sigma & S & 0 \\ -S & \Sigma & 0 \\ 0 & 0 & I_{N(M-2)} \end{array}\right) & =K \bigoplus_{j \in[N]}\left(\begin{array}{cc} \sigma_j & \sqrt{1-\sigma_j^2} \\ -\sqrt{1-\sigma_j^2} & \sigma_j \end{array}\right) \bigoplus I_{N(M-2)} K^{\dagger} \\ & =K \bigoplus_{j \in[N]} e^{-\frac{1}{4} Z} e^{i \arccos \left(\sigma_j\right) X} e^{\frac{1}{4} Z} \bigoplus I_{N(M-2)} K^{\dagger} \end{aligned}

    The ancilla workspace “decouples” the big matrix into many identical two-level problems—one per singular value.


    4 Quantum Signal Processing (QSP)

    4.1 Alternating Phase Modulation

    Define a single-qubit “signal” matrix

    W(x)=eiarccos(x)X=(xi1x2i1x2x). W(x)=e^{i\arccos(x)X}= \begin{pmatrix} x & i\sqrt{1-x^{2}}\\ i\sqrt{1-x^{2}} & x \end{pmatrix}.

    With phase list Φ=(φ0,,φd)Rd+1\Phi=(\varphi_0,\dots,\varphi_d)\in\mathbb{R}^{d+1},

    U(x,Φ)=eiφ0Z  j=1dW(x)eiφjZ. U(x,\Phi)=e^{i\varphi_0 Z}\; \prod_{j=1}^{d} W(x)\,e^{i\varphi_j Z}.

    4.2 Polynomial magic

    Theorem 2.3.3 There exist polynomials P,QP,Q with degPd,  degQd1,\deg P\le d,\; \deg Q\le d-1, P(x)2+(1x2)Q(x)2=1|P(x)|^2+(1-x^2)|Q(x)|^2=1 on [1,1][-1,1] such that

    U(x,Φ)=(P(x)iQ(x)1x2iQ(x)1x2P(x)). U(x,\Phi)= \begin{pmatrix} P(x) & iQ(x)\sqrt{1-x^{2}}\\ iQ^{*}(x)\sqrt{1-x^{2}} & P^{*}(x) \end{pmatrix}.

    Consequently, within each 2-level block in (1) the sequence

    $$-Z(φ_0)-W(σ_0)-Z(φ1)- ... -W(σ{d-1})-Z(φ_d)-$$

    implements the singular-value transformation

    σj    P(σj). \sigma_j \;\longmapsto\; P(\sigma_j).

    For Hermitian AA, this is an eigenvalue transformation; the system’s states never leave the physical subspace.

    4.3 Design recipe

    1. Pick a real target polynomial f(x)f(x) (bounded by 1 on [1,1][-1,1]).
    2. Use constructive algorithms (e.g. iterative symmetric QSP solvers) to find a phase list Φ\Phi with ReP=f\text{Re}\,P=f.
    3. Insert the resulting alternating-phase circuit in front of your block-encoded oracle.

    5 Putting it all together

    Stage Linear-algebra viewpoint Circuit ingredient
    CSD Factor arbitrary UU into 2×22 × 2 rotations Compile large operators into small blocks
    Qubitization Embed AA as a block of UAU_A; apply CSD Ancilla qubits + permutation wiring
    QSP Alternate ZZXX rotations inside each block Phase list → polynomial PP

    The synergy is powerful:

    • Hamiltonian simulation: take f(x)=eitxf(x)=e^{itx}.
    • Linear-system solving: take f(x)=1/xf(x)=1/x.
    • Ground-state prep: take Chebyshev filters, f(x)=Td(x)f(x)=T_d(x).

    All boil down to finding phases.


    6 Further reading

    • Y. Dong, Quantum Signal Processing Algorithm and Its Applications (PhD thesis, 2023) – Chapter 2.
    • G. H. Low & I. L. Chuang, “Hamiltonian Simulation by Qubitization,” Quantum 3, 163 (2019).